Large Scale Polyphonic Music Transcription Using Randomized Matrix Decompositions

İsmail Arı, Umut Şimşekli, Ali Taylan Cemgil, Lale Akarun

Dept. of Computer Engineering, Bogazici University, TURKEY

Requirements

- Fully automatic
- Deal with large data
- Efficiency (time & space complexities)
- Accuracy, simplicity and robustness

Improving efficiency via CUR

Use $\mathbf{D} \approx \mathbf{CUR}$ to represent dictionary via its columns/rows. $k_{\rm col}/k_{\rm row}$ are the number of selected columns/rows.

First, compute singular vectors, then

 \Rightarrow Probability of selecting i^{th} row is

$$\rho_i = \frac{1}{k} \sum_{j=1}^k A_k(i,j)^2, \quad i = 1, \dots, F$$

 \Rightarrow Probability of selecting j^{th} column is

$$\pi_j = \frac{1}{k} \sum_{i=1}^k B_k(j, i)^2, \quad j = 1, \dots, N$$

Select k_{col}/k_{row} columns/rows randomly using a multinomial distribution with the computed probabilities.

Store ${f R}$ and store ${f C}{f U}$ as ${f ilde C}$.

Modify the update rule:

$$\mathbf{W} \leftarrow \mathbf{W} \odot \left(\frac{\mathbf{R}^\intercal \left(\mathbf{\tilde{C}}^\intercal \frac{\mathbf{X}}{\left(\mathbf{\tilde{C}}(\mathbf{R}\mathbf{W}) \right)} \right)}{\mathbf{R}^\intercal (\mathbf{\tilde{C}}^\intercal \mathbb{1})} \right)$$

- More interpretable decomposition
- Still trying to approximate the large dictionary matrix

Materials & Methods

Linear model approach

Find ${\bf W}$ that minimizes the cost $\mathcal{D}\left[{\bf X}\|{\bf D}{\bf W}\right]$.

We choose KL-divergence as cost function:

i. randomly initialize ${f W}$

ii. continue with the following step until convergence

$$\mathbf{W} \leftarrow \mathbf{W} \odot \left(\frac{\mathbf{D}^\intercal \frac{\mathbf{X}}{(\mathbf{D}\mathbf{W})}}{\mathbf{D}^\intercal \mathbb{1}} \right)$$

Division is done element-wise

- \odot implies element-wise (Hadamard) multiplication
- $\ensuremath{\mathbb{1}}$ is a vector of ones of approppriate size
- \mathbf{D}^\intercal is the transpose of $\,\mathbf{D}\,$
- © Simple model; easy to understand and implement
- 😕 Dictionary is huge in real apps; it may not fit into the RAM
- Matrix-products in the equation are costly

Time & Space Complexities (in Big-O notation)

	Time	Space
Full model	FNT	FN
SVD-based	(F+N)kT	(F+N)k
CUR-based	$(F+N) \min\{k_{\text{row}}, k_{\text{col}}\} T$	$(F+N) \min\{k_{\text{row}}, k_{\text{col}}\}$
C-based	$Fk_{col}T$	Fk_{col}
Skeleton	$k_{ m row}~k_{ m col}T$	$k_{ m row} \ k_{ m col}$

Improving efficiency via SVD

Use reduced SVD to compute rank-k approximation of \mathbf{D} . Employ **randomized SVD** do deal with large data.

$$\underset{\mathbf{\tilde{D}}, \ \mathrm{rank}(\tilde{\mathbf{D}}) \leq k}{\mathrm{arg\,min}} \|\mathbf{D} - \tilde{\mathbf{D}}\|_F = \mathbf{A}_k \mathbf{\Sigma}_k \mathbf{B}_k^\intercal$$

Store \mathbf{A}_k and store $\mathbf{\Sigma}_k \mathbf{B}_k^\intercal$ as $\tilde{\mathbf{B}}_k^\intercal$.

Modify the update rule:

$$\mathbf{W} \leftarrow \mathbf{W} \odot \left(rac{\mathbf{ ilde{B}}_k \left(\mathbf{A}_k^\intercal rac{\mathbf{X}}{\left(\mathbf{A}_k (\mathbf{ ilde{B}}_k^\intercal \mathbf{W})
ight)}
ight)}{\mathbf{ ilde{B}}_k (\mathbf{A}_k^\intercal \mathbb{1})}
ight)$$

© Best factorization in terms of reconstruction error

Singular vectors may not represent *physical reality*

Improving efficiency via selection of important data

Instead of using low rank approximation of the full matrix ⇒Use only the selected columns

$$\mathbf{W} \leftarrow \mathbf{W} \odot \left(rac{\mathbf{C}^\intercal rac{\mathbf{X}}{(\mathbf{C}\mathbf{W})}}{\mathbf{C}^\intercal \mathbb{1}}
ight)$$

 \Rightarrow Let \check{D} be the truncated matrix involving only the selected indices and \check{X} involve the selected rows of the input Then, use only the selected indices

$$\mathbf{W} \leftarrow \mathbf{W} \odot \left(\frac{\mathbf{\check{D}}^\intercal \frac{\check{\mathbf{X}}}{(\check{\mathbf{D}}\mathbf{W})}}{\check{\mathbf{D}}^\intercal \mathbb{1}} \right)$$

- Use only relevant information
- © Fast & low space requirement

Experimental Setup

MAPS (MIDI Aligned Piano Sounds) Dataset

- \Rightarrow Training set
 - 440 monophonic piano recordings
 - Dictionary of size 1025 × 115600 (~ 860 MB)

\Rightarrow Test set

- Random sections from 5 different polyphonic pieces
- 3000 samples

Results

Results per approach

Precision, recall and f-measure per approach

- © For SVD-based approach, 200 dimensions (with 78.14% f-measure) is enough to maintain the original f-measure score (78.07%).
- We select 400 frequency bands and 4000 samples; CUR is a good alternative to SVD with similar results.
- © C-based approach and skeletonizing (reducing both the #cols and the #rows) give promising results.
- We only use less than 2% of the data after skeletonization, and get an f-measure of 77.17%.

Results per polyphony order

Precision, recall and f-measure per polyphony order using skeletonization

Effect of #cols/#rows on the result

f-measures versus the #cols (samples) and the #rows (frequency bins)

© Only a few hundred frequency bins and a few thousand samples are sufficient to keep success ratio of the algorithm

Conclusions

- We show that even a standard matrix factorization model is prohibitive in real applications where a huge amount of data is used.
- A high f-measure value (~78%) is obtained on polyphonic recordings by using only a few hundred frequency bins and a few thousand sample columns out of a huge dictionary.
- The technique is simple, yet powerful and robust.
- Randomized matrix decompositions are crucial for practical issues.
- With abundance of data in different applications, randomized matrix decompositions are likely to get more attention in the future.

